Chapter 33 References

  • Abadie, A., & Gardeazabal, J. (2003). The economic costs of conflict: A case study of the Basque Country. American Economic Review, 93(1), 113–132.

  • Abadie, A., & Imbens, G. W. (2002). Simple and bias-corrected matching estimators for average treatment effects. NBER Technical Working Paper No. 283. https://doi.org/10.3386/t0283

  • Abadie, A., & Imbens, G. W. (2006). Large sample properties of matching estimators for average treatment effects. Econometrica, 74(1), 235–267. https://doi.org/10.1111/j.1468-0262.2006.00655.x

  • Abadie, A., & Imbens, G. W. (2008). On the failure of the bootstrap for matching estimators. Econometrica, 76(6), 1537–1557. https://doi.org/10.3982/ECTA6474

  • Abadie, A., & Imbens, G. W. (2011). Bias-corrected matching estimators for average treatment effects. Journal of Business & Economic Statistics, 29(1), 1–11. https://doi.org/10.1198/jbes.2009.07333

  • Abadie, A., & Imbens, G. W. (2016). Matching on the estimated propensity score. Econometrica, 84, 781–807. https://doi.org/10.3982/ECTA11293

  • Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. Journal of the American Statistical Association, 105(490), 493–505.

  • Abadie, A., Diamond, A., & Hainmueller, J. (2011). Synth: An R package for synthetic control methods in comparative case studies. Journal of Statistical Software, 42(13), 1–17. https://doi.org/10.18637/jss.v042.i13

  • Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic control method. American Journal of Political Science, 59(2), 495–510.

  • Acemoglu, D., & Finkelstein, A. (2008). Input and technology choices in regulated industries: Evidence from the health care sector. Journal of Political Economy, 116, 837–880.

  • Acemoglu, D., Johnson, S., & Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. American Economic Review, 91(5), 1369–1401.

  • Aizer, A., & Doyle, J. J. (2015). Juvenile incarceration, human capital, and future crime: Evidence from randomly assigned judges. Quarterly Journal of Economics, 130(2), 759–803.

  • Amjad, M., Shah, D., & Shen, D. (2018). Robust synthetic control. Journal of Machine Learning Research, 19(22), 1–50.

  • Andrews, I., Stock, J. H., & Sun, Y. (2018). Weak instruments in instrumental variables regression: Theory and practice. Annual Review of Economics, 10, 683–706. Retrieved from https://scholar.harvard.edu/files/wirev_092218-_corrected_0.pdf

  • Angrist, J. D. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from Social Security administrative records. American Economic Review, 80(3), 313–336.

  • Angrist, J. D., & Krueger, A. B. (1991). Does compulsory school attendance affect schooling and earnings? Quarterly Journal of Economics, 106(4), 979–1014.

  • Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press.

  • Arcidiacono, P., & Ellickson, P. B. (2022). Practical Methods for Estimating Dynamic Discrete Choice Models. arXiv:1808.02569.

  • Arkhangelsky, D., & Imbens, G. (2024). Causal models for longitudinal and panel data: A survey. The Econometrics Journal, 27(3), C1–C61. https://doi.org/10.1093/ectj/utae014

  • Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic difference-in-differences. American Economic Review, 111(12), 4088–4118. https://doi.org/10.1257/aer.20190159

  • Athey, S., & Imbens, G. W. (2019). Machine Learning Methods That Economists Should Know About. Annual Review of Economics, 11, 685–725. https://doi.org/10.1146/annurev-economics-080217-053433

  • Athey, S., & Wager, S. (2019). Estimating treatment effects with causal forests: An application. The Annals of Statistics, 47(2), 1148–1178.

  • Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. Annals of Statistics, 47(2), 1148–1178.

  • Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in Medicine, 28(25), 3083–3107. https://doi.org/10.1002/sim.3697

  • Austin, P. C., & Small, D. S. (2014). The use of bootstrapping when using propensity-score matching without replacement: A simulation study. Statistics in Medicine, 33(24), 4306–4319.

  • Autor, D. H., Dorn, D., & Hanson, G. H. (2013). The China syndrome: Local labor market effects of import competition in the United States. American Economic Review, 103(6), 2121–2168.

  • Banerjee, A., & Duflo, E. (2009). “The Experimental Approach to Development Economics.” Annual Review of Economics, 1, 151–178.

  • Belloni, A., Chernozhukov, V., & Hansen, C. (2014a). Inference on treatment effects after selection among high-dimensional controls. Review of Economic Studies, 81(2), 608–650.

  • Belloni, A., Chernozhukov, V., & Hansen, C. (2014b). High-dimensional methods and inference on structural and treatment effects. Journal of Economic Perspectives, 28(2), 29–50.

  • Ben-Michael, E., Feller, A., & Rothstein, J. (2021). The augmented synthetic control method. Journal of the American Statistical Association, 116(536), 1789–1803. https://doi.org/10.1080/01621459.2021.1929245

  • Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), 281–305.

  • Berrar, D. (2019). Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Elsevier.

  • Berry, S., & Haile, P. (2021). Foundations of Demand Estimation. CFDP 2301, revised May 2022. https://cowles.yale.edu/research/cfdp-2301-foundations-demand-estimation

  • Bohn, S., Lofstrom, M., & Raphael, S. (2014). Did the 2007 Legal Arizona Workers Act reduce the state’s unauthorized immigrant population? Review of Economics and Statistics, 96(2), 258–269.

  • Borjas, G. J. (2021). Labor Economics (8th ed.). McGraw-Hill Education.

  • Boshnjaku, A., Krasniqi, E., & Kamberi, F. (2025). The emerging need to integrate digital health literacy as a course into health-related and care-related profession curricula. Frontiers in Public Health. Retrieved from https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2025.1534139/full

  • Boulesteix, A.-L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining and Knowledge Discovery, 2(6), 493–507.

  • Box, G. E. P. (1976). “Science and Statistics.” Journal of the American Statistical Association, 71(356), 791–799.

  • Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day.

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

  • Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231. https://doi.org/10.1214/ss/1009213726

  • Busshoff, H., Bodory, H., & Lechner, M. (2022). High-resolution treatment effects estimation: Uncovering effect heterogeneities with the modified causal forest. Entropy, 24(8), 1039. https://doi.org/10.3390/e24081039

  • Bühlmann, P., & van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer.

  • Callaway, B., & Sant’Anna, P. H. C. (2021). Difference-in-differences with multiple time periods. Journal of Econometrics, 225(2), 200–230.

  • Calonico, S., Cattaneo, M. D., & Titiunik, R. (2014). Robust nonparametric confidence intervals for regression-discontinuity designs. Econometrica, 82(6), 2295–2326.

  • Calonico, S., Cattaneo, M. D., & Titiunik, R. (2017). Robust nonparametric confidence intervals for regression-discontinuity designs. Econometrica, 85(1), 229–261.

  • Calonico, S., Cattaneo, M. D., Farrell, M. H., & Titiunik, R. (2019). Regression discontinuity designs using covariates. Review of Economics and Statistics, 101(3), 442–451.

  • Calonico, S., Cattaneo, M. D., Farrell, M. H., Palomba, F., & Titiunik, R. (2025). Treatment effect heterogeneity in regression discontinuity designs [Working paper]. arXiv preprint. https://arxiv.org/abs/2503.13696

  • Campbell, D. T., & Stanley, J. C. (1963). Experimental and Quasi-Experimental Designs for Research. Houghton Mifflin.

  • Card, D. (1990). The impact of the Mariel Boatlift on the Miami labor market. Industrial and Labor Relations Review, 43(2), 245–257.

  • Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In L. N. Christofides, E. K. Grant, & R. Swidinsky (Eds.), Aspects of Labour Market Behaviour: Essays in Honour of John Vanderkamp (pp. 201–222). University of Toronto Press.

  • Cartwright, N. (2007). Hunting Causes and Using Them: Approaches in Philosophy and Economics. Cambridge University Press.

  • Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2006). Intelligible models for healthcare: Predicting pneumonia risk and hospital readmission. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144.

  • Cattaneo, M. D., Idrobo, N., & Titiunik, R. (2024). A practical introduction to regression discontinuity designs: Extensions. Cambridge Elements: Quantitative and Computational Methods for Social Science. Cambridge University Press.

  • Cavallo, E., Galiani, S., Noy, I., & Pantano, J. (2013). Catastrophic natural disasters and economic growth. Review of Economics and Statistics, 95(5), 1549–1561.

  • Chang, N. C. (2020). Double/debiased machine learning for difference-in-differences models. Econometrics Journal, 23, 177–191.

  • Chen, H., Tian, X., & Yu, Y. (2020). CausalML: Python package for causal inference with machine learning. GitHub Repository. Retrieved from https://github.com/uber/causalml

  • Chen, X., Chernozhukov, V., Fernández-Val, I., & Kostyshak, S. (2021). Debiased/double machine learning for instrumental variable quantile regressions. arXiv preprint. https://arxiv.org/abs/1909.12592

  • Chen, X., Christensen, T., & Kankanala, S. (2025). Adaptive estimation and uniform confidence bands for nonparametric structural functions and elasticities. The Review of Economic Studies, 92(1), 162–196. https://doi.org/10.1093/restud/rdae025

  • Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., & Newey, W. (2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1), C1–C68. https://academic.oup.com/ectj/article/21/1/C1/5056401

  • Chernozhukov, V., Hansen, C., & Spindler, M. (2015). Post-selection and post-regularization inference in linear models with many controls and instruments. American Economic Review: Papers & Proceedings, 105(5), 486–490.

  • Chiu, A., Lan, X., Liu, Z., & Xu, Y. (2025). Causal panel analysis under parallel trends: Lessons from a large reanalysis study. American Political Science Review (conditionally accepted). arXiv preprint arXiv:2309.15983. https://doi.org/10.48550/arXiv.2309.15983

  • Ciccia, D. (2024). A short note on event-study synthetic difference-in-differences estimators. arXiv preprint arXiv:2407.09565. https://doi.org/10.48550/arXiv.2407.09565

  • Clarke, D., Pailañir, D., Athey, S., & Imbens, G. (2024). On synthetic difference-in-differences and related estimation methods in Stata. The Stata Journal, 24(4), 557–598. https://doi.org/10.1177/1536867X241297914

  • Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24(2), 295–313. https://doi.org/10.2307/2528036

  • Cochran, W. G., & Rubin, D. B. (1973). Controlling bias in observational studies: A review. Sankhyā: The Indian Journal of Statistics, Series A, 35(4), 417–446. Retrieved from https://www.jstor.org/stable/25049893

  • Cox, D. R. (2001). Statistical modeling: The two cultures [Comment]. Statistical Science, 16(3), 216–218.

  • Crudu, P. (2023). Long-term effects of early adverse labour market conditions: A causal machine learning approach. SSRN Working Paper. https://ssrn.com/abstract=4592117

  • Currie, J., & Gruber, J. (1996). Saving babies: The efficacy and cost of recent changes in the Medicaid eligibility of pregnant women. Journal of Political Economy, 104(6), 1263–1296.

  • Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.

  • Daubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11), 1413–1457.

  • Davies, N. M., Smith, G. D., & Windmeijer, F. (2023). Reading and conducting instrumental variable studies: A guide for researchers. The BMJ, 387, e078093.

  • Davis, J. M. V., & Heller, S. B. (2020). Rethinking the benefits of youth employment programs: The heterogeneous effects of summer jobs. The Review of Economics and Statistics, 102(4), 664–677. https://doi.org/10.1162/rest_a_00850

  • de Chaisemartin, C., & d’Haultfœuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. American Economic Review, 110(9), 2964–2996.

  • de Chaisemartin, C., & d’Haultfœuille, X. (2023). Credible answers to hard questions: Differences-in-differences for natural experiments. SSRN Working Paper. https://ssrn.com/abstract=4487202 or https://doi.org/10.2139/ssrn.4487202

  • de Chaisemartin, C., & D’Haultfœuille, X. (2024). Difference-in-differences estimators of intertemporal treatment effects. The Review of Economics and Statistics. https://doi.org/10.1162/rest_a_01414

  • Deaton, A., & Cartwright, N. (2018). “Understanding and Misunderstanding Randomized Controlled Trials.” Social Science & Medicine, 210, 2–21.

  • Diebold, F. X. (2015). Forecasting in Economics, Business, Finance, and Beyond. Princeton University Press.

  • Dinkelman, T. (2011). The effects of rural electrification on employment: New evidence from South Africa. American Economic Review, 101(7), 3078–3108.

  • Dobkin, C., Finkelstein, A., Kluender, R., & Notowidigdo, M. J. (2018). The economic consequences of hospital admissions. American Economic Review, 108(2), 308–352.

  • Dube, A., & Zipperer, B. (2022). Minimum wages and employment: A case study of the fast-food industry. Quarterly Journal of Economics.

  • Efron, B. (2001). Statistical modeling: The two cultures [Comment]. Statistical Science, 16(3), 218–219.

  • Efron, B. (2020). Prediction, Estimation, and Attribution. Journal of the American Statistical Association, 115(530), 636–655. https://doi.org/10.1080/01621459.2020.1762613

  • Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman & Hall.

  • Feng, Z., Lu, Y., & Wang, R. (2022). Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach. Health & Place, 75, 102825. Retrieved from https://www.sciencedirect.com/science/article/pii/S1353829222000053

  • Freijeiro-González, L., Febrero-Bande, M., & González-Manteiga, W. (2022). A critical review of LASSO and its derivatives for variable selection under dependence among covariates. International Statistical Review, 90(1), 12469. https://doi.org/10.1111/insr.12469

  • Friedman, J., Hastie, T., & Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302–332.

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

  • Friedman, M. (1953). “The Methodology of Positive Economics.” In Essays in Positive Economics, University of Chicago Press.

  • Fu, W. J. (1998). Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397–416.

  • Fuller, S., & Rametta, J. T. (2024). Causal forest and doubly robust machine learning for political science. OSF.

  • Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M. A., & Davidian, M. (2011). Doubly robust estimation of causal effects. American Journal of Epidemiology, 173(7), 761–767. https://doi.org/10.1093/aje/kwq439

  • Gelman, A. (2021). Reflections on Breiman’s two cultures of statistical modeling. Observational Studies, 7(1), 95–98. https://doi.org/10.1353/obs.2021.0025

  • Gelman, A., & Imbens, G. W. (2019). Why high-order polynomials should not be used in regression discontinuity designs. Journal of Business & Economic Statistics, 37(3), 447–456.

  • Glynn, A. N., & Quinn, K. M. (2010). An introduction to the augmented inverse propensity weighted estimator. Political Analysis, 18(1), 36–56.

  • Goldsmith-Pinkham, P., Hull, P., & Kolesár, M. (2020). Assessing the validity of using Bartik instruments for natural experiments. NBER Working Paper No. 24426.

  • Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, 225(2), 254–277.

  • Grembi, V., Nannicini, T., & Troiano, U. (2016). Do fiscal rules matter? American Economic Journal: Applied Economics, 8(3), 1–30.

  • Gruber, S., & van der Laan, M. J. (2009). Targeted maximum likelihood estimation: A gentle introduction. U.C. Berkeley Division of Biostatistics Working Paper Series, Working Paper 252. Retrieved from https://biostats.bepress.com/ucbbiostat/paper252

  • Haddad, M., Huber, M., & Zhang, L. (2024). Difference-in-differences with time-varying continuous treatments using double/debiased machine learning. arXiv preprint arXiv:2410.21105. https://arxiv.org/abs/2410.21105

  • Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica, 69(1), 201–209.

  • Handayani, Y. (2025). Implementation of good governance in Indonesia in an effort to minimize corruption crime. Journal of Health, Economics, and Social Sciences. Retrieved from https://www.jurnal.unismuhpalu.ac.id/index.php/IJHESS/article/download/6878/4872

  • Hansen, B. E. (2022). Econometrics. Princeton University Press

  • Hartford, J., Lewis, G., Leyton-Brown, K., & Taddy, M. (2017). Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning (ICML), 1414–1423. Retrieved from http://proceedings.mlr.press/v70/hartford17a.html

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.

  • Hettinger, G., Lee, Y., & Mitra, N. (2025). Multiply robust difference-in-differences estimation of causal effect curves for continuous exposures. Biometrics, 81(1), ujaf015. https://doi.org/10.1093/biomtc/ujaf015

  • Hoerl, A. E., & Kennard, R. W. (1970a). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67. https://doi.org/10.1080/00401706.1970.10488634

  • Hoerl, A. E., & Kennard, R. W. (1970b). Ridge regression: Applications to nonorthogonal problems. Technometrics, 12(1), 69–82. https://doi.org/10.1080/00401706.1970.10488635

  • Hsu, Y., & Shen, S. (2024). Dynamic regression discontinuity under treatment effect heterogeneity. Quantitative Economics, 15(4), 1035–1064. https://doi.org/10.3982/QE2150

  • Huang, J., Ma, S., & Zhang, C. H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, 18, 1603–1618.

  • Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts.

  • Imbens, G. W., & Angrist, J. D. (1994). Identification and estimation of local average treatment effects. Econometrica, 62(2), 467–475.

  • Imbens, G. W., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. The Review of Economic Studies, 79(3), 933–959.

  • Imbens, G. W., & Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press.

  • Imbens, G. W., & Wooldridge, J. M. (2009). Recent developments in the econometrics of program evaluation. Journal of Economic Literature, 47(1), 5–86. https://doi.org/10.1257/jel.47.1.5

  • Javanmard, A., & Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. Journal of Machine Learning Research, 15, 2869–2909.

  • Jiang, K., Xu, W., & Danowski, J. (2025). Network analysis of social media texts. Frontiers in Research Metrics and Analytics. Retrieved from https://www.frontiersin.org/journals/research-metrics-and-analytics/articles/10.3389/frma.2025.1558798/full

  • Jin, F. F., Naghi, A. A., & Pick, A. (2019). Heterogeneous treatment effects of educational interventions by using random forests. Erasmus University Thesis.

  • Kang, H., Guo, Z., Liu, Z., & Small, D. (2024). Identification and inference with invalid instruments. arXiv preprint arXiv:2407.19558. https://arxiv.org/abs/2407.19558

  • Kennedy, E. H. (2022). Towards optimal doubly robust estimation of heterogeneous causal effects. arXiv preprint arXiv:2004.14497. https://arxiv.org/abs/2004.14497

  • King, G., & Nielsen, R. (2019). Why propensity scores should not be used for matching. Political Analysis, 27(4), 435–454. https://doi.org/10.1017/pan.2019.11

  • Klemperer, P., & Meyer, M. (1986). Price competition vs. quantity competition: The role of uncertainty. RAND Journal of Economics, 17(4), 618–638.

  • Kreif, N., DiazOrdaz, K., & Moreno-Serra, R. (2022). Estimating heterogeneous policy impacts using causal machine learning: A case study of health insurance reform in Indonesia. Health Services and Outcomes Research Methods, 22, 192–227. https://doi.org/10.1007/s10742-021-00259-3

  • Kreif, N., Grieve, R., Hangartner, D., Turner, A. J., Nikolova, S., & Sutton, M. (2016). Examination of the synthetic control method for evaluating health policies with multiple treated units. Health Economics, 25(12), 1514–1528.

  • Kreiss, A., & Rothe, C. (2024). Inference in regression discontinuity designs with high-dimensional covariates. The Econometrics Journal, 26(2), 105–123. https://doi.org/10.1093/ectj/utac029

  • Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.

  • Kunzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 116(10), 4156–4165. https://doi.org/10.1073/pnas.1804597116

  • Kwak, D., Liang, Y., Shi, X., & Tan, X. (2024). Comparing machine learning and advanced methods with traditional methods to generate weights in inverse probability of treatment weighting: The INFORM study. Pragmatic and Observational Research, 15, 173–183. https://doi.org/10.2147/POR.S466505

  • Lechner, M. (2002). Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(1), 59–82.

  • Lechner, M., & Mareckova, J. (2025). Comprehensive causal machine learning. arXiv preprint arXiv:2405.10198. https://doi.org/10.48550/arXiv.2405.10198

  • Lee, B. K., Lessler, J., & Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine, 29(3), 337–346. https://doi.org/10.1002/sim.3782

  • Lesko, C. R., Henderson, N. C., & Varadhan, R. (2018). Considerations when assessing heterogeneity of treatment effect in patient-centered outcomes research. Journal of Clinical Epidemiology, 100, 22–31. https://doi.org/10.1016/j.jclinepi.2018.04.005

  • Leuven, E., & Sianesi, B. (2003). psmatch2: Stata module to perform full Mahalanobis and propensity score matching. Statistical Software Components.

  • Levis, B., Kennedy, C. J., & Keele, L. (2024). Nonparametric identification and efficient estimation of causal effects using instrumental variables. Econometrics Journal, forthcoming.

  • Lin, W. (2013). Agnostic notes on regression adjustments to experimental data: Reexamining Freedman’s critique. Annals of Applied Statistics, 7, 295–318. Retrieved from https://arxiv.org/pdf/1208.2301

  • Lin, W., Ding, P., & Han, Z. (2023). Efficiency gains of matching over regression adjustment in causal inference. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2023.2166827

  • Love, T. E. (2002). Displaying covariate balance: Love plots. Cleveland Clinic Biostatistics Workshop. Retrieved from https://bioinformatics.ccf.org

  • Lucas, R. E. (1976). Econometric Policy Evaluation: A Critique. In K. Brunner & A. Meltzer (Eds.), The Phillips Curve and Labor Markets. Carnegie-Rochester Conference Series on Public Policy.

  • Lunceford, J. K., & Davidian, M. (2004). Augmented inverse probability weighting and the double robust estimator. Biometrics, 60(2), 353–361.

  • Ma, X., Karimpour, A., & Wu, Y.-J. (2023). A causal inference approach to eliminate the impacts of interfering factors on traffic performance evaluation. arXiv preprint. https://arxiv.org/abs/2308.03545

  • Ma, Y., & Wang, L. (2018). Robust inference using inverse probability weighting. arXiv preprint arXiv:1810.11397. Retrieved from https://arxiv.org/abs/1810.11397

  • Manski, C. F. (2019). Patient Care under Uncertainty. Princeton University Press.

  • McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity. Journal of Econometrics, 142(2), 698–714.

  • McLean, C. (2025). The aquanaut: Still a tool for ocean science. Frontiers in Marine Science. Retrieved from https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2025.1527929/full

  • Miguel, E., Satyanath, S., & Sergenti, E. (2004). Economic shocks and civil conflict: An instrumental variables approach. Journal of Political Economy, 112(4), 725–753.

  • Mogstad, M., & Torgovitsky, A. (2018). Identification and extrapolation of causal effects with instrumental variables. Annual Review of Economics, 10, 577–613.

  • Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.

  • Nakamura, E., & Steinsson, J. (2018). Identification in macroeconomics. Journal of Economic Perspectives, 32(3), 59–86.

  • Nie, X., & Wager, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2), 299–319. https://doi.org/10.1093/biomet/asaa076

  • Noack, C., Olma, T., & Rothe, C. (2024). Flexible covariate adjustments in regression discontinuity designs. arXiv preprint arXiv:2107.07942. https://arxiv.org/abs/2107.07942

  • Nunn, N., & Qian, N. (2014). U.S. food aid and civil conflict. American Economic Review, 104(6), 1630–1666.

  • Observational Studies Special Issue: Commentaries on Breiman’s Two Cultures Paper. (2021). Observational Studies, 7(1). https://muse.jhu.edu/issue/45147

  • Ogburn, E. L., & Shpitser, I. (2021). Causal modelling: The two cultures. Observational Studies, 7(1), 179–183. https://doi.org/10.1353/obs.2021.0006

  • Piot-Lepetit, I. (2025). Strategies of digitalization and sustainability in agrifood value chains. Frontiers in Sustainable Food Systems. Retrieved from https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2025.1565662/full

  • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181–199.

  • Puterman, E., Weiss, J., Hives, B. A., Gemmill, A., Karasek, D., Mendes, W. B., & Adler, N. (2020). Predicting mortality from 57 economic, behavioral, social, and psychological factors. Proceedings of the National Academy of Sciences, 117(15), 8456–8463. Retrieved from https://www.pnas.org/doi/abs/10.1073/pnas.1918455117

  • Rahayu, N. S., & Pradita, A. R. (2025). Optimizing the use of domestic products within the Ministry of State Apparatus and Bureaucratic Reforms. International Journal of Health, Economics, and Social Sciences. Retrieved from https://www.jurnal.unismuhpalu.ac.id/index.php/IJHESS/article/download/6383/4836

  • Rajagopal, D., & Subramanian, P. K. T. (2025). AI augmented edge and fog computing for Internet of Health Things (IoHT). PeerJ Computer Science. Retrieved from https://peerj.com/articles/cs-2431.pdf

  • Rehill, P. (2025). How do applied researchers use the causal forest? A methodological review. International Statistical Review. https://doi.org/10.1111/insr.12610

  • Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some predictors are not always observed. Journal of the American Statistical Association, 89(427), 846–866.

  • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55. https://doi.org/10.1093/biomet/70.1.41

  • Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79(387), 516–524. https://doi.org/10.2307/2288398

  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34–58.

  • Rubin, D. B. (1980). Randomization analysis of experimental data: The Fisher randomization test comment. Journal of the American Statistical Association, 75(371), 591–593.

  • Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2, 169–188. https://doi.org/10.1023/A:1020363010465

  • Sadorsky, P. (2021). A random forests approach to predicting clean energy stock prices. Journal of Risk and Financial Management, 14(2), 48. Retrieved from https://www.mdpi.com/1911-8074/14/2/48

  • Salditt, M., Eckes, T., & Nestler, S. (2024). A tutorial introduction to heterogeneous treatment effect estimation with meta-learners. Administration and Policy in Mental Health and Mental Health Services Research, 51, 650–673. https://doi.org/10.1007/s10488-023-01303-9

  • Schultz Lindenmeyer, G., & da Silva Torrent, H. (2024). Boosting and predictability of macroeconomic variables: Evidence from Brazil. Computational Economics, 64, 377–409. https://doi.org/10.1007/s10614-023-10421-3

  • Shah, V., Kreif, N., & Jones, A. M. (2023). Evaluating the heterogeneous impacts of Indonesia’s national health insurance scheme using causal machine learning. In N. Hashimzade & M. Thornton (Eds.), Handbook of Research Methods and Applications in Empirical Microeconomics. Edward Elgar Publishing.

  • Shao, D., Soleymani, A., Quinzan, F., & Kwiatkowska, M. (2024). Learning decision policies with instrumental variables through double machine learning. arXiv preprint. https://arxiv.org/abs/2405.08498

  • Sharma, S., & Bangur, P. (2025). Circling to wellness: Health implications of transitioning to a circular economy. Circular Economy and Sustainability. Retrieved from https://link.springer.com/article/10.1007/s43615-025-00507-5

  • Shirvaikar, V., Lin, X., & Holmes, C. (2023). Targeting relative risk heterogeneity with causal forests. arXiv preprint. https://arxiv.org/abs/2309.15793

  • Shmueli, G. (2010). To Explain or To Predict? Statistical Science, 25(3), 289–310. https://dx.doi.org/10.2139/ssrn.1351252

  • Singer, J. D., & Willett, J. B. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York: Oxford Academic. Online edition published September 1, 2009.

  • Staiger, D., & Stock, J. H. (1997). Instrumental variables regression with weak instruments. Econometrica, 65(3), 557–586. Retrieved from https://www.nber.org/system/files/working_papers/t0284/t0284.pdf

  • Stock, J. H., & Yogo, M. (2005). Testing for weak instruments in linear IV regression. In D. W. K. Andrews & J. H. Stock (Eds.), Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg (pp. 80–108). Cambridge University Press. Retrieved from https://scholar.harvard.edu/files/stock/files/testing_for_weak_instruments_in_linear_iv_regression.pdf

  • Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science, 25(1), 1–21. https://doi.org/10.1214/09-STS313

  • Sverdrup, E., Petukhova, M., & Wager, S. (2024). Estimating treatment effect heterogeneity in psychiatry: A review and tutorial with causal forests. arXiv preprint. https://arxiv.org/abs/2409.01578

  • Słoczyński, T., Uysal, S. D., & Wooldridge, J. M. (2023). Covariate balancing and the equivalence of weighting and doubly robust estimators of average treatment effects. arXiv preprint arXiv:2310.18563. Retrieved from https://arxiv.org/abs/2310.18563

  • Tamba, W. P., Yanti, F., & Tamba, D. (2025). Jakarta waste management policy and the capacity crisis of Bantargebang TPST: An environmental justice review. Renai Journal. Retrieved from https://renai-journal.percik.or.id/index.php/renai/article/download/15/12

  • Tetlock, P. E., & Gardner, D. (2015). Superforecasting: The Art and Science of Prediction. Crown.

  • Thoplan, R. (2014). Random forests for poverty classification. International Journal of Sciences: Basic and Applied. Retrieved from https://www.researchgate.net/profile/Ruben-Thoplan/publication/264785074_Random_Forests_for_Poverty_Classification/links/53ef8d0a0cf2711e0c42f4b4/Random-Forests-for-Poverty-Classification.pdf

  • Tibshirani, R. J. (2013). The lasso problem and uniqueness. arXiv preprint, arXiv:1206.0313. https://doi.org/10.48550/arXiv.1206.0313

  • van de Geer, S., Bühlmann, P., & Zhou, S. (2011). The adaptive and the thresholded lasso for potentially misspecified models (and a lower bound for the lasso). Electronic Journal of Statistics, 5, 688–749. https://doi.org/10.1214/11-EJS624

  • van de Geer, S., Bühlmann, P., Ritov, Y., & Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. Annals of Statistics, 42(3), 1166–1202. https://doi.org/10.1214/14-AOS1221

  • Varadhan, R., & Seeger, J. D. (2013). Estimation and reporting of heterogeneity of treatment effects. In P. Velentgas, N. A. Dreyer, P. Nourjah, et al. (Eds.), Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide (Chapter 3). Rockville, MD: Agency for Healthcare Research and Quality. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK126188/

  • Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113(523), 1228–1242. arXiv:1712.09988.

  • Wang, C., Wang, S., Shi, F., & Wang, Z. (2018). Robust propensity score computation method based on machine learning with label-corrupted data. arXiv preprint. https://arxiv.org/abs/1801.03132

  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.). MIT Press.

  • Xu, Y. (2017). Generalized synthetic control method. Political Analysis, 25(1), 57–76.

  • Xu, Y., & Liu, L. (2022). gsynth: Generalized Synthetic Control Method. R package version 1.2.1. https://yiqingxu.org/packages/gsynth/

  • Yadlowsky, S., Fleming, S., Shah, N., Brunskill, E., & Wager, S. (2021). Evaluating treatment prioritization rules via rank-weighted average treatment effects. arXiv preprint arXiv:2111.07966. https://arxiv.org/abs/2111.07966

  • Young, A. (2022). Channeling Fisher: Randomization tests and the statistical insignificance of seemingly significant experimental results. Quarterly Journal of Economics, 137(2), 611–661.

  • Yıldız, A. Y., & Kalayci, A. (2025). Gradient boosting decision trees on medical diagnosis over tabular data. arXiv preprint. https://doi.org/10.48550/arXiv.2410.03705

  • Zhang, C.-H., & Zhang, S. S. (2014). Confidence intervals for low-dimensional parameters in high-dimensional linear models. Journal of the Royal Statistical Society: Series B, 76(1), 217–242.

  • Zhang, L. Z. (2025). Continuous difference-in-differences with double/debiased machine learning. arXiv preprint arXiv:2408.10509. https://arxiv.org/abs/2408.10509

  • Zhang, Y., Chen, S., & Liu, D. (2024). A measurement study of the environmental quality and medical expenditures of elderly individuals: Causal inference based on machine learning. Archives of Public Health, 82, 195. https://doi.org/10.1186/s13690-024-01386-2

  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429.

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x